مدينة الكهرباء
اهلا ومرحبا بكل اعضائنا وزوارنا الكرام فى منتدى مدينه الكهرباء
عليكم الافاده والاستفاده
ولكم منا كل الحب والتقدير
مدينة الكهرباء
اهلا ومرحبا بكل اعضائنا وزوارنا الكرام فى منتدى مدينه الكهرباء
عليكم الافاده والاستفاده
ولكم منا كل الحب والتقدير
مدينة الكهرباء
هل تريد التفاعل مع هذه المساهمة؟ كل ما عليك هو إنشاء حساب جديد ببضع خطوات أو تسجيل الدخول للمتابعة.

مدينة الكهرباء

عالم (الاتصالات والالكترونيات&القوى والات الكهربائيه)
 
الرئيسيةأحدث الصورالتسجيلدخول
نقدم الحلول الكاملة لأنظمة الطاقة و التحكم " دوائر باور / دوائر تحكم / plc / انظمة الحرارة / دوائر تحسين معامل القدرة/ اللوحات الموفرة للطاقة /بادئات الحركة للمحركات / تحكم فى السرعة
اهلا ومرحبا بكل اعضائنا الكرام عليكم الافاده والاستفاده ولكم منا كل الحب والتقدير
اان واجهتك اى مشكله او اردت اى استفسار راسلنى على ايميل(bravewael_1988@yahoo.com)(وائل حلمى)

 

 power factor correction

اذهب الى الأسفل 
كاتب الموضوعرسالة
محمد عبد الفضيل
مشرف عام
مشرف عام
محمد عبد الفضيل


الدوله : مصر
عدد المساهمات : 137
نقاط : 52502
السٌّمعَة : 3
تاريخ التسجيل : 05/01/2010
العمل او الدراسه : مهندس شئون فنية شركة شمال الدلتا لتوزيع الكهرباء

power factor correction Empty
مُساهمةموضوع: power factor correction   power factor correction I_icon_minitimeالسبت أبريل 03, 2010 3:01 am

Practical power factor correction







google_protectAndRun("ads_core.google_render_ad", google_handleError, google_render_ad);








When the need arises to correct for poor power factor in an AC power
system, you probably won't have the luxury of knowing the load's exact
inductance in henrys to use for your calculations. You may be fortunate
enough to have an instrument called a power factor meter
to tell you what the power factor is (a number between 0 and 1), and
the apparent power (which can be figured by taking a voltmeter reading
in volts and multiplying by an ammeter reading in amps). In less
favorable circumstances you may have to use an oscilloscope to compare
voltage and current waveforms, measuring phase shift in degrees and calculating power factor by the cosine of that phase shift.


Most likely, you will have access to a wattmeter for measuring true
power, whose reading you can compare against a calculation of apparent
power (from multiplying total voltage and total current measurements).
From the values of true and apparent power, you can determine reactive
power and power factor. Let's do an example problem to see how this
works: (Figure below)




power factor correction 02220
Wattmeter reads true power; product of voltmeter and ammeter readings yields appearant power.


First, we need to calculate the apparent power in kVA. We can do this by multiplying load voltage by load current:


power factor correction 12128

As we can see, 2.308 kVA is a much larger figure than 1.5 kW, which
tells us that the power factor in this circuit is rather poor
(substantially less than 1). Now, we figure the power factor of this
load by dividing the true power by the apparent power:


power factor correction 12129

Using this value for power factor, we can draw a power triangle, and
from that determine the reactive power of this load: (Figure below)




power factor correction 02221
Reactive power may be calculated from true power and appearant power.


To determine the unknown (reactive power) triangle quantity, we use the
Pythagorean Theorem “backwards,” given the length of the hypotenuse
(apparent power) and the length of the adjacent side (true power):


power factor correction 12130

If this load is an electric motor, or most any other industrial AC
load, it will have a lagging (inductive) power factor, which means that
we'll have to correct for it with a capacitor
of appropriate size, wired in parallel. Now that we know the amount of
reactive power (1.754 kVAR), we can calculate the size of capacitor
needed to counteract its effects:


power factor correction 12131

Rounding this answer off to 80 µF, we can place that size of capacitor in the circuit and calculate the results: (Figure below)




power factor correction 02222
Parallel capacitor corrects lagging (inductive) load.


An 80 µF capacitor will have a capacitive reactance of 33.157 Ω,
giving a current of 7.238 amps, and a corresponding reactive power of
1.737 kVAR (for the capacitor only). Since the capacitor's current is 180o
out of phase from the the load's inductive contribution to current
draw, the capacitor's reactive power will directly subtract from the
load's reactive power, resulting in:


power factor correction 12132

This correction, of course, will not change the amount of true power
consumed by the load, but it will result in a substantial reduction of
apparent power, and of the total current drawn from the 240 Volt
source: (Figure below)




power factor correction 02223
Power triangle before and after capacitor correction.


The new apparent power can be found from the true and new reactive
power values, using the standard form of the Pythagorean Theorem:


power factor correction 12133

This gives a corrected power factor of (1.5kW / 1.5009 kVA), or
0.99994, and a new total current of (1.50009 kVA / 240 Volts), or 6.25
amps, a substantial improvement over the uncorrected value of 9.615
amps! This lower total current will translate to less heat losses in
the circuit wiring, meaning greater system efficiency (less power
wasted).
الرجوع الى أعلى الصفحة اذهب الى الأسفل
 
power factor correction
الرجوع الى أعلى الصفحة 
صفحة 1 من اصل 1
 مواضيع مماثلة
-
» مفاجاه حلووووووووول كتاب power system2 power
» 1.3V Power Supply
» كتاب Power System Analysis by Stevenson
» برنامج ETAP Power Station 4 بالكراك
» برنامج لحل مسائل power system مادة د/ سيد ناجى

صلاحيات هذا المنتدى:لاتستطيع الرد على المواضيع في هذا المنتدى
مدينة الكهرباء :: المنتديات الهندسية :: منتدى الهندسة الكهربية-
انتقل الى: